Abstract: Manganese is an attractive element for sustainable solutions. It is largely available in the earth's crust, making it ideal for cost-effective and large-scale applications. Especially MnO nanoparticles have recently received attention for applications in battery technology. However, manganese has many oxidation states that are energetically very similar, indicating that they may easily transform from one to the other. Herein, the reversible oxidation of MnO nanoparticles to Mn3O4 studied with in situ transmission electron microscopy is shown. The oxygen sublattices of MnO and Mn3O4 are found to be perfectly aligned, and an atomic mechanism where the transformation is facilitated by the migration of Mn cations on the shared O sublattice is proposed. Even when protected with an amorphous carbon layer, MnO particles are highly unstable and oxidize to Mn3O4 in ethanol. The poor stability of MnO lacks discussion in many battery-related works, and strategies aimed at avoiding this should be developed.
Abstract: Nanoscale gadolinium oxide (Gd2O3) is a promising nanomaterial with unique physicochemical properties that finds various applications ranging from biomedicine to catalysis. The preparation of highly porous Gd2O3 nanofoam greatly increases its surface area thereby boosting its potential for functional use in applications such as water purification processes and in catalytic applications. By using the combustion synthesis method, a strong exothermic redox reaction between gadolinium nitrate hexahydrate and glycine causes the formation of crystalline nanoporous Gd2O3. In this study, the synthesis of Gd2O3 nanofoam is achieved with combustion synthesis at large scale (grams). Its nanoscale porosity is investigated by nitrogen physisorption and its nanoscale 3D structure by electron tomography, and the formation process is investigated as well by means of in situ heating inside the transmission electron microscope. The bulk nanofoam product is highly crystalline and porous with a surface area of 67 m2 g−1 as measured by physisorption, in good agreement with the electron tomographic 3D reconstructions showing an intricate interconnected pore network with pore sizes varying from 2 to 3 nm to tens of nanometers. In situ heating experiments point to many possibilities for tuning the porosity of the Gd2O3 nanofoam by varying the experimental synthesis conditions.